Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Trace Elem Med Biol ; 83: 127391, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38219458

RESUMEN

BACKGROUND: Currently, mercury pollution is a widespread problem in the world. As mercury is difficult to remove from the environment, it has long-term negative effects on soil health and human life. One of the techniques to stabilise Hg is phytostabilisation, which can be supported by arbuscular mycorrhizal fungi (AMF). METHODS: In a 4-month pot experiment, we investigated the suitability of three seed-based Miscanthus hybrids (GNT3, GNT34, GNT43) for growth on soils heavily polluted with mercury (6795.7 mg kg-1). During the experiment, the effects of high soil contamination with mercury on physiological parameters and colonisation of roots of seed-based Miscanthus hybrids by indigenous AMF from Hg-contaminated and uncontaminated soils were investigated. RESULTS: A high pseudo-total Hg concentration (6795.75 mg kg-1) in soil was found. The Hg content in the aerial part of GNT34 grown on Hg-contaminated soil was 1.5 times and 3 times higher than GNT3 and GNT43, respectively. The Hg content in the roots of GNT3 on Hg-contaminated soil was 25% and 10% lower than that of GNT34 and GNT43, respectively. The N content in the aboveground part of GNT34 in the Hg variant was 13.5% lower compared to the control soil. The P and K content in the shoots of the Miscanthus hybrids was lower in the plants grown on Hg-contaminated soil. The P content in GNT43 in the Hg variant was 33% and 19% lower than in GNT34 and GNT3, respectively. The K content in GNT34 in the Hg variant was 24.7% and 31.4% higher than in GNT43 and GNT3, respectively. The dry weight of the shoots and roots as well as the shoot height of the Miscanthus hybrids were lower in Hg-contaminated soil. Lower values of AMF root colonisation parameters (F, M) were observed in the plants in the Hg variant. In the Hg variant, a lower photosynthetic rate and a decrease in chlorophyll content were observed in the leaves of the Miscanthus hybrids. In the Hg variant, an increase in the content of flavonols was observed. The strongest toxic effect of mercury on the light phase of photosynthesis was measured in GNT34. CONCLUSION: Soils heavily contaminated with mercury negatively affected the physiological parameters of Miscanthus, as evidenced by a decrease in photosynthetic rate and biomass. The ability of indigenous AMF from Hg-contaminated soils to colonise the roots of seed-based Miscanthus hybrids was limited.


Asunto(s)
Mercurio , Micorrizas , Contaminantes del Suelo , Humanos , Mercurio/toxicidad , Mercurio/análisis , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Poaceae , Suelo , Plantas , Semillas/química , Biodegradación Ambiental
2.
Plants (Basel) ; 12(10)2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37653919

RESUMEN

Nature-based solutions are promising for climate adaptation and environmental management in urban areas, but urban conditions are stressful for vegetation. In particular, the interaction of drought and high temperatures may be detrimental. Guiding plant selection for urban greening with native species requires a far better knowledge of plant adaptations and stress acclimation. We tested the physiological responses of four candidate calcareous grassland species for green roofs and walls to the combined effects of drought and high temperatures under controlled conditions. The tested species proved relatively resistant to stress despite different strategies to protect the photosynthetic apparatus, maintain water balance, and repair damages. Based on the physiological responses, we rank the species in descending order of resistance to the stress factors tested: Trifolium medium > Festuca ovina > Carex flacca > Potentilla reptans, but all four can serve as potential candidates for green walls and roofs. Physiological stress screening of plant species for use on green roofs and walls supplements the habitat template approach to provide a stronger and wider base for prioritizations.

3.
Sci Rep ; 13(1): 10452, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37380788

RESUMEN

Drought is a serious threat worldwide and has a significant impact on agricultural production and soil health. It can pose an even greater threat when it involves land contaminated with trace metal element (TMEs). To prevent desertification, such land should be properly managed and growing Miscanthus for energy or raw material purposes could be a solution. The effects of drought and TMEs were studied in a pot experiment on three different Miscanthus hybrids (conventional Miscanthus × giganteus, TV1 and GNT10) considering growth parameters, photosynthetic parameters and elemental composition of roots, rhizomes and shoots. GNT10 was characterised by the weakest gas exchange among the hybrids, which was compensated by the highest number of leaves and biomass. The strongest correlations between the studied parameters were found for TV1, which might indicate a high sensitivity to TME stress. For M × g and GNT10, the main mechanisms for coping with stress seem to be biomass management through number of shoots and leaves and gas exchange. The main factor determining the extent of accumulation of TMEs was the amount of water applied in the experimental treatment, which was related to the location of the plant in the aniso-isohydric continuum. GNT10 was the most resistant plant to combined stress, while it responded similarly to TV1 when drought and trace metal elements were applied separately.


Asunto(s)
Sequías , Oligoelementos , Poaceae , Adaptación Psicológica , Agricultura , Biomasa
4.
Plants (Basel) ; 11(9)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35567217

RESUMEN

Understanding the behavior of arbuscular mycorrhizal fungi (AMF) associated with plants is essential for optimizing plant cultivation to the phytoremediation of degraded soils. The objective of the present study was to evaluate the differences in AMF root colonization between novel seed-based interspecific Miscanthus hybrids (M. sacchariflorus × M. sinensis) and the standard M. × giganteus when grown in soils contaminated with heavy metals (Pb, Cd, and Zn). During the third and fourth growing seasons, higher concentration of metals in the roots and a limited transfer of metals from the roots to the shoots were observed in all the plants studied. After the third growing season, the lowest values of AMF colonization rates were observed for the GNT34 hybrid. After the fourth growing season, AMF colonization decreased, which could be due to the drought that occurred during that season. GNT34 showed a lower tendency to develop mycorrhizal structures on heavy-metal (HM)-contaminated soils than GNT41 and M × g; however, this hybrid was insensitive to changes in colonization rates during the dry growing season.

5.
Plants (Basel) ; 12(1)2022 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-36616227

RESUMEN

Climate change and man-made pollution can have a negative impact on the establishment of Miscanthus plants in the field. This is particularly important because biomass can be produced on marginal land without conflicting with food crops. The establishment success depends on the hybrid chosen, the cultivation method, the climatic conditions, and the concentration of pollutants in the soil. There are several ways to increase the survival rate of the plants during the first growing season and after the first winter. One of them is the application of biochar and photodegradable plastic mulch, which can provide a solution for soils polluted with trace elements (TMEs). The aim of this study was to investigate the application of plastic mulch and biochar separately and in combination at the planting stage for two Miscanthus hybrids planted by the rhizome method (TV1) and seedling plugs (GNT43) on soils contaminated with trace metal elements (Pb, Cd, Zn). TV1 seems unsuitable for TME-contaminated field cultivation, as the survival rate was <60% in most treatments studied. The selected treatments did not increase the survival rate. Furthermore, the application of plastic mulch in combination with biochar resulted in a significant reduction of this parameter, regardless of the hybrid studied. The applied agrotechnology did not influence the TME accumulation in the aboveground plant parts in TV1, while Pb and Cd in GNT43 showed significantly higher values in all treatments. Contrary to expectations, biochar and plastic mulch applied separately and together neither increased survival nor reduced the accumulation of toxic TMEs during establishment on soil contaminated with TMEs and after the first growing season.

6.
Environ Pollut ; 255(Pt 2): 113271, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31550655

RESUMEN

Most mercury (Hg) deposition in the environment results from anthropogenic inputs, Chlor-Alkali Plants (CAPs) particularly had a significant Hg impact on the environment at a regional scale. Exposure to mercury compounds resulting in various toxic effects for living organisms. The aim of this study was to investigate the capacity of granular sulphur (S) soil amendment and cultivation of Dactylis glomerata to decrease gaseous mercury emission to the atmosphere and mercury mobility in soils affected by CAP activity in the past. The effect of this approach on D. glomerata physiological status was also assessed (Hg concentration in biomass, chlorophyll a fluorescence, pigment contents and oxidative stress). Stabilization of mercury in soil and reduction of root and shoot concentration did not influence biomass production. Despite similar yields, photosynthetic efficiency was higher for plants grown in sulphur amended soil compared to unamended soil, particularly observed in phenomenological energy fluxes. Relative chlorophyll content was 30% lower for amended soil plants, however based on chlorophyll fluorescence data those were in high portion ineffective. Oxidative stress products and catalase activity did not differ significantly between experimental treatments. Sulphur amendment was a key factor for reduction of Hg mobility in soil (reduced by about 30%) while plant cover was significant for the reduction of Hg atmospheric emission (emissions were 2-times higher in sulphur amended soil without plant cover). Due to the very high concentration of Hg in soil (798.2 ±â€¯7.3 mg kg-1), growth inhibition was consistent regardless of treatment, demonstrated in the overload Reactive Oxygen Species scavenging mechanism and similar biomass yields. This leads to the conclusion that Hg may have greater impact on Calvin-Benson cycle associated enzymes than on the light-dependent photosynthesis phase. Despite these limitations this approach may still decrease environmental risks by reducing Hg emission to the atmosphere and reducing groundwater contamination.


Asunto(s)
Biodegradación Ambiental , Dactylis/fisiología , Mercurio/análisis , Contaminantes del Suelo/análisis , Animales , Clorofila/metabolismo , Clorofila A , Compuestos de Mercurio , Fotosíntesis , Suelo , Azufre
7.
Environ Sci Pollut Res Int ; 26(5): 4746-4763, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30565117

RESUMEN

The aim of this study was to investigate the effect of autochthonous microorganisms present in soil collected from heavy metal (HM) uncontaminated (Pb ≈ 59 mg kg-1, Cd ≈ 0.4 mg kg-1, Zn ≈ 191 mg kg-1), moderately (Pb ≈ 343 mg kg-1, Cd ≈ 12 mg kg-1, Zn ≈ 1876 mg kg-1), and highly (Pb ≈ 1586 mg kg-1, Cd ≈ 57 mg kg-1, Zn ≈ 3280 mg kg-1) contaminated sites on Zea mays elemental composition, physiological status, and growth parameters. For this purpose, half of the collected soil was sterilized and soil characterization was performed. After 45 days of cultivation, the presence of HM in the soil negatively affected photosynthesis and transpiration rates, relative chlorophyll content, anthocyanins index, chlorophyll fluorescence parameters, and content of oxidative stress products (H2O2 and Malondialdehyde) of Zea mays, while soil sterilization had a positive effect on those parameters. Average percentage of colonization of root segments by arbuscular mycorrhiza fungi decreased with an increase of HM contamination in the soil. The increase in shoot concentration of HMs, particularly Cd and Zn, was a result of contaminated soils sterilization. Aboveground biomass of maize cultivated on sterilized soil was 3-fold, 1.5-fold, and 1.5-fold higher for uncontaminated, moderately contaminated and highly contaminated soils respectively when compared to nonsterilized soils. Contrary to our expectation, autochthonous microflora did not improve plant growth and photosynthetic performance; in fact, they had a negative effect on those processes although they did reduce concentration of HMs in the shoots grown on contaminated soils.


Asunto(s)
Metales Pesados/farmacocinética , Raíces de Plantas/microbiología , Microbiología del Suelo , Contaminantes del Suelo/farmacocinética , Zea mays/fisiología , Antocianinas/metabolismo , Biomasa , Clorofila/metabolismo , Peróxido de Hidrógeno/metabolismo , Metales Pesados/análisis , Micorrizas/efectos de los fármacos , Micorrizas/fisiología , Estrés Oxidativo/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Polonia , Suelo/química , Contaminantes del Suelo/análisis , Zea mays/crecimiento & desarrollo , Zea mays/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...